491

BINDING OF [^{*}H]TETRAHYDROLEUCOMYCIN A₃ TO ESCHERICHIA COLI RIBOSOMES AND THE EFFECT OF 3''-O-ACYL DERIVATIVES OF LEUCOMYCINS ON THE BINDING

SATOSHI ŌMURA, HARUO TANAKA and JUNJI INOKOSHI

School of Pharmaceutical Sciences, Kitasato University, and The Kitasato Institute, Shirokane 5-9-1, Minato-ku, Tokyo 108, Japan

HIDEO SAKAKIBARA and TATSURO FUJIWARA

Research Laboratories, Toyo Jozo Co., Ltd., Ohito, Shizuoka 410–23, Japan

(Received for publication January 20, 1982)

The analysis of [⁸H]tetrahydroleucomycin A_3 binding to *Escherichia coli* ribosomes are described. The dissociation constant for tetrahydroleucomycin A_3 binding to ribosomes was 1.15×10^{-8} M. One molecule of tetrahydroleucomycin A_3 was bound to each 70 S ribosome (50 S subunit) as reported with erythromycin.

The effect of leucomycins and their 3''-O-acyl derivatives on [3 H]tetrahydroleucomycin A₈ binding to ribosomes was examined. In general, 3''-O-acyl derivatives of leucomycins exhibited stronger antimicrobial activity against Gram-positive bacteria and weaker (or equivalent) activity against *E. coli* than their mother compounds. However, the affinities to ribosomes were approximately equivalent to those of the mother compounds, suggesting that Grampositive bacterial cells are more permeable to 3''-O-acyl derivatives than to the mother compounds.

The mechanism of action of macrolide antibiotics has been studied using erythromycin, the representative of 14-membered macrolides.^{1,2)} The binding of erythromycin to the 50 S subunit of bacterial ribosome causes an inhibition of protein synthesis. PESTKA *et al.*³⁾ and \bar{O} MURA *et al.*⁴⁾ studied the structure-activity relationship of leucomycins (LMs), the representative of 16-membered macrolides, by comparison of their antimicrobial activities with the affinities to ribosomes that were determined by competition with [¹⁴C]erythromycin in binding to *Escherichia coli* ribosomes.⁵⁾ In general, the binding of LMs and their derivatives to ribosomes correlates with their antimicrobial activities against Gram-positive bacteria. However, where a discrepancy between antimicrobial activity and affinity to ribosomes exists, other factors such as cellular permeability or modification of the macrolide may be responsible. Some 2'-O-acyl derivatives undergo gradual hydrolysis during antimicrobial assays, for their binding to ribosomes is poor compared to their relatively good antimicrobial activities.⁴⁾ On the contrary, LM-A₈ *N*-oxide has poor permeability or is inactivated during incubation for determination of antimicrobial activity, since the binding to ribosomes is high

compared to the poor antimicrobial activity.³⁾

Recently, [⁸H]dihydrorosaramicin was synthesized from rosaramicin, a 16-membered macrolide, and their binding to *E. coli* ribosomes was analyzed.⁶⁾ However, dihydrorosaramicin is less active than rosaramicin since a hydroxymethyl group is substituted for the aldehyde

group which plays an important role in antimicrobial activity. We attempted the synthesis of [10, 11,12,13- 3 H]tetrahydroleucomycin A₃ ([3 H]THLM-A₃, Fig. 1) from LM-A₃; THLM-A₃ possesses antimicrobial activity similar to that of LM-A₃⁷.

In the present paper, we report our analysis of the binding of [${}^{8}H$]THLM-A₃ to *E. coli* ribosomes and the effect of LMs and their 3''-acyl derivatives^{8, 0} on the binding, and discuss structure-activity relationships.

Materials and Methods

Materials

Ribosomes were prepared by Sephacryl S-300 column chromatography from a $25,000 \times g$ supernatant fraction obtained by crushing the cells of *Escherichia coli* with alumina as described by JELENC.¹⁰⁾

[10,11,12,13-^sH]THLM-A₃ was synthesized at The Radiochemical Center, Amersham, and then purified in our laboratory as follows. An ethanol solution of LM-A₃ was stirred under tritium gas atmosphere for one hour in the presence of PtO₂ catalyst to give quantitatively [10,11,12,13-³H]THLM-A₃. The catalyst was removed by filtration and the filtrate was evaporated *in vacuo*. The crude powder was purified by preparative thin-layer chromatography (Merck Kieselguhr 60 F_{254}) using benzene - acetone (1: 1) and then chloroform - methanol - ammonia (20: 1: 0.025) as developing solvents. The Rf values of LM-A₃ and THLM-A₃ were 0.58 and 0.62, respectively, in the former solvent system. A radioactive spot on the plate was detected by autoradiography. The purified [³H]THLM-A₃ gave a single spot in thin-layer chromatography with the above solvent systems and the Rf values were essentially equivalent to those of an authentic sample of non-radioactive THLM-A₃. The purified sample did not exhibited at all the absportion at 232 nm which LM-A₃ had, indicating that it does not contain LM-A₃. The [³H]THLM-A₃ had 4.45 Ci/mmole of specific radioactivity.

LMs were prepared in our laboratory⁷⁾ and their 3''-acyl derivatives were synthesized according to SAKAKIBARA *et al.*^{8,9)}. Each compound was dissolved in 0.01 N HCl to make a stock solution of 10 mm. The solutions were stable in a refrigerator for at least one month. Dilution was made with sterile water.

Determination of [⁸H]THLM-A₈ Binding to Ribosomes

Binding of [8 H]THLM-A₃ to ribosomes was determined by the filter assay method described by PESTKA *et al.*³⁾ with modification. The reaction mixture contained the following components in a volume of 0.5 ml unless otherwise specified: 5 mM MgCl₂, 0.1 M KCl, 0.1 M NH₄Cl, 10 mM tris-HCl (pH 7.2), 5 A₂₆₀ units of ribosomes from *E. coli*, 1.03 μ M [8 H]THLM-A₈ (58,830 dpm), and a cold antibiotic sample. Reaction was started by adding ribosomes to the reaction mixture and performed at 24°C for 30 minutes. The reaction was stopped by diluting the reaction mixture with 3 ml of cold solution A (5 mM MgCl₂, 0.15 M KCl, and 10 mM tris-HCl (pH 7.2)). The diluted reaction mixture was filtered through a 25-mm diameter membrane filter (HAWP, Millipore Co.) and immediately washed ten times with 3 ml of cold solution A. The filter was then dried under an infrared lamp and the radioactivity was determined in a scintillation spectrometer, using a toluene based scintillation fluid.

Analysis of Ribosomes-[³H]THLM-A₃ Complex by Sucrose Density Gradient Centrifugation

A reaction mixture (0.1 ml) containing 0.63 μ M [⁸H]THLM-A₃ (58,200 dpm), 20 A₂₆₀ units of ribosomes (520 pmoles), 5 mM MgCl₂, 0.1 m KCl, 0.1 m NH₄Cl and 10 mm tris-HCl (pH 7.2) was incubated at 24°C for 30 minutes. The reaction mixture was cooled on ice and then layered on a linear 5 ~ 30% sucrose gradient made in a buffer (pH 7.2) containing 0.5 mM MgCl₂, 0.1 m KCl, 0.1 m NH₄Cl and 10 mm tris-HCl. Centrifugation was in an SW41 rotor in a Beckman ultracentrifuge for 4 hours at 4°C and at 40,000 rpm. Gradients were fractionated from the bottom; 0.5-ml fractions were collected, and the radioactivity and A₂₀₀ determined.

Determination of Minimal Inhibitory Concentrations (MICs)

MICs against *Staphylococcus aureus* FDA 209P, *Bacillus subtilis* PCI 219, *Micrococcus luteus* PCI 1001, and *E. coli* NIHJ were determined by the agar dilution method using a medium containing 0.5% peptone and 0.5% meat extract (pH 7.0).

THE JOURNAL OF ANTIBIOTICS

Results and Discussion

Effect of K^+ and Mg^{2+} on [³H]THLM-A₃ Binding to Ribosomes

PESTKA⁵⁾ reported that erythromycin binding to *E. coli* ribosomes requires K⁺ and Mg²⁺. Fig. 2 shows the effect of K⁺ and Mg²⁺ on [³H]THLM-A₃ binding to *E. coli* ribosomes. Binding of THLM-A₃ to ribosomes was hardly recognized in the absence of K⁺, and a strong binding was shown at 50~ 500 mM concentrations of K⁺. A high binding activity was observed even at 1 mM Mg²⁺ which is the lowest concentration in the reaction mixtures tested, and at Mg²⁺ concentrations between 5 and 20 mM a definite activity was shown. It is estimated that binding of [³H]THLM-A₃ to ribosomes would be decreased at lower concentrations of Mg²⁺ as is the binding of erythromycin to ribosomes. In the following experiments, the reaction mixtures contained 100 mM of KCl and 5 mM of MgCl₂.

Binding of [3H]THLM-A3 to Ribosomes and Their Subunits

When a reaction mixture containing 1.04 μ M [³H]THLM-A₃ and 0.26 μ M ribosomes was incubated at 24°C for 30 minutes, about 90% of ribosomes bound to [³H]THLM-A₃ (Fig. 3). From the Scatchard plot (Fig. 3-right), the association constant, dissociation constant and number of bound THLM-A₃ molecules per ribosome were calculated to be 8.68×10^7 M⁻¹, 1.15×10^{-9} M and 0.91, respectively. These values indicate that THLM-A₃ binds to ribosomes at single binding site per ribosome as reported with chloramphenicol¹¹), erythromycin⁵⁾ and rosaramicin⁸⁾. The above association constant and dissociation constant are similar to those reported for erythromycin (9.9×10^7 M⁻¹ and 1.0×10^{-8} M, respectively), indicating that THLM-A₃ and erythromycin have a similar affinity to ribosomes. Furthermore, the result of analysis by sucrose density gradient centrifugation of ribosomes incubated with [³H]THLM-A₃ (Fig. 4) showed that the labeled compound bound to 50S subunits but not to 30S subunits of ribosomes.

The affinity of *E. coli* ribosomes for 16-membered macrolide antibiotics has been determined by examining the effect of these antibiotics on [¹⁴C]erythromycin binding to ribosomes^{3,4)}. The above results indicate that [³H]THLM-A₃ instead of [¹⁴C]erythromycin can be used for direct determination of the affinity of 16-membered macrolides to ribosomes.

Fig. 2. Effect of K⁺ and Mg²⁺ on [³H]THLM-A₃ binding to ribosomes.

Fig. 3. Binding of $[^{8}H]THLM-A_{3}$ to ribosomes as a function of $[^{8}H]THLM-A_{3}$ concentrations.

- r: Moles of [³H]THLM-A₃ bound per mole of ribosomes.
- A: The concentration of free [3H]THLM-A3.

Table 1. Affinities to ribosomes and antimicrobial activities of leucomycins and their *O*-acyl derivatives. Concentration (ID_{50}) of a compound for 50% inhibition of [⁸H]THLM-A₃ binding to ribosomes and the minimal inhibitory concentration (MIC) were assayed as described in the text.

No.	. Compound*	R ₁	R_2	\mathbf{R}_3	R ₄	ID ₅₀ (µм)	MIC (µg/ml)**			
							BS	SA	ML	EC
1	Leucomycin (LM)-V	Н	Н	Н	Н	4.0	2.5	1.3	0.16	50
2	4''-O-Ac-3''-O-Bu-LM-V	Η	Н	Bu	Ac	1.0	0.08	0.16	<0.01	50
3	9,4''-Di-O-Ac-3''-O-Bu-LM-V	Η	Ac	Bu	Ac	1.3	0.16	0.31	0.04	50
4	9,4 ^{''} -Di- <i>O</i> -Ac-3 ^{''} - <i>O</i> - <i>i</i> Va-LM-V	Н	Ac	iVa	Ac	1.4	0.16	0.63	<0.01	100
5	LM-A ₇	Н	Н	Н	Pr	2.7	0.78	0.78	<0.1	25
6	3 ^{''} -O-Pr-LM-A ₇	Η	Η	Pr	Pr	0.9	0.16	0.16	<0.02	>10
7	9-0-Ac-3''-0-Bu-LM-A7	Η	Ac	Bu	Pr	1.2	0.16	0.08	0.08	50
8	9-0-Pr-3''-0-Bu-LM-A7	Н	Pr	Bu	Pr	1.4	0.16	0.16	0.02	>100
9	Midecamycin	Pr	Н	Н	Pr		0.31	0.31	0.04	50
10	9,3"-Di-O-Ac-midecamycin	Pr	Ac	Ac	Pr	1.6	0.16	0.08	0.02	50
11	LM-A ₅	Η	Н	Н	Bu	1.2	0.16	0.16	0.02	13
12	3''-O-Ac-LM-A ₅	Η	Н	Ac	Bu	1.3	0.08	0.04	<0.01	13
13	$3^{\prime\prime}$ -O-Pr-LM-A ₅	Н	Η	Pr	Bu	1.1	0.04	0.08	<0.01	25
14	3''-O-Bu-LM-A ₅	н	Н	Bu	Bu	1.3	0.16	0.08	0.02	25
15	9,3''-Di-O-Ac-LM-A ₅	н	Ac	Ac	Bu	1.8	0.16	0.31	0.02	25
16	9-O-Ac-3''-O-Pr-LM-A ₅	Η	Ac	Pr	Bu	1.2	0.08	0.04	0.02	25
17	9-0-Ac-3''-0-Bu-LM-A ₅	Н	Ac	Bu	Bu	1.0	0.08	0.08	<0.01	100
18	LM-A ₄	Ac	Η	Н	Bu	1.3	0.31	0.31	0.04	25
19	3''-O-Ac-LM-A ₄	Ac	Η	Ac	Bu	1.3	0.08	0.16	0.04	25
20	9-O-Ac-LM-A ₄	Ac	Ac	Η	Bu	1.8	0.16	0.16	0.04	50
21	9,3''-Di-O-Ac-LM-A ₄	Ac	Ac	Ac	Bu	1.3	0.04	0.16	<0.01	100
22	LM-A ₁	Η	Η	Н	iVa	1.1	0.16	0.08	0.04	13
23	3''-O-Ac-LM-A1	Η	Η	Ac	iVa	1.3	0.16	0.08	0.02	25
24	3''-O-Pr-LM-A ₁	Η	Н	Pr	iVa	0.9	0.16	0.08	<0.02	>10
25	LM-A ₃	Ac	Η	н	iVa	1.8	0.31	0.31	0.04	25
26	3 ^{''} -O-Ac-LM-A ₃	Ac	Н	Ac	iVa	1.7	0.16	0.08	0.02	50
27	10,11,12,13-Tetrahydro-LM-A $_3$	Ac	Η	Η	iVa	1.8	0.31	0.4	<0.1	100

* Ac, acetyl (COCH₃); Pr, propionyl (COCH₂CH₃); Bu, butyryl (COCH₂CH₂CH₃); *i*Va, *iso*-valeryl (COCH₂CH(CH₃)₂).

** BS, Bacillus subtilis PCI 219; SA, Staphylococcus aureus FDA 209P; ML, Micrococcus luteus PCI 1001; EC, Escherichia coli NIHJ.

Competition Experiments Using [8H]THLM-A3 as a Marker

For the comparison of the affinities of LM-A₃ and THLM-A₃ for *E. coli* ribosome, competition experiments were performed using [³H]THLM-A₃ as a marker. As shown in Fig. 5, when an excess of unlabeled LM-A₃ or THLM-A₃ was added to the reaction mixture, the [³H]THLM-A₃ binding to ribosomes was almost completely inhibited. The 50% inhibition dose (ID₅₀) of LM-A₃ for the binding was cal-

494

Fig. 4. Analysis of ribosome-THLM-A₃ complex by sucrose density gradient centrifugation.

Fig. 5. Effect of LM-A₃ (\bullet) and THLM-A₃ (\bigcirc) on [³H]THLM-A₃ binding to ribosomes.

culated from the results shown in Fig. 5 to be 1.8 μ M and shown to be equivalent to that for THLM-A_a.

The ID₅₀ value is similar level to those assayed using [¹⁴C]erythromycin by PESTKA *et al.*³⁰ (4.2 μ M) and ŌMURA *et al.*⁴⁾ (1.2 μ M). THLM-A₃ and LM-A₃ also exhibited approximately the same antimicrobial activity against Gram-positive bacteria (Table 1 and Reference 7). Thus, the new method for direct determination of ribosome affinities of 16-membered macrolide antibiotics was established.

Correlation of the Affinities to Ribosomes of 3''-O-Acyl Derivatives of LMs with Their Antimicrobial Activities

The ID₅₀ of LMs and 3"-O-acyl derivatives and the MICs against B. subtilis, S. aureus, M. luteus, and E. coli are summarized in Table 1. As shown in Table 1, 3"-O-acyl derivatives of LM-A₅, LM-A₄, and LM-A₃ (3"-O-acetyl-LM-A₅, 3''-O-propionyl-LM-A₅, 3''-O-acetyl-LM-A₄, and 3"-O-acetyl-LM-A₃) exhibited stronger antimicrobial activity against Gram-positive bacteria and weaker (or equivalent) activity against Gram-negative bacteria than their mother compounds. However, the affinities of the 3"-Oacyl derivatives to ribosomes were approximately equivalent to those of the mother compounds. This suggests that Gram-positive bacterial cells are more permeable to 3"-O-acyl derivatives than to the mother compounds. On the other hand, with a compound possessing a longer acyl group than butyryl, such as LM-A1, 3"-O-acylation has little effect. 3"-O-Propionyl-LM-A7 exhibited both a stronger antimicrobial activity and a higher affinity to ribosomes than LM-A₇. This good correlation suggests that the increase in the

Fig. 6. Log(MIC) as a function of pK_{50} of [⁸H]-THLM-A₈ binding to ribosomes for LMs (\bullet) and their 3''-O-acyl derivatives (\bigcirc).

The MIC values against *B. subtilis* (Table 1) was used. The pK_{50} is the negative log of ID_{50} (Table 1).

The numbers in the figure refer to the compounds as numbered in Table 1.

THE JOURNAL OF ANTIBIOTICS

affinity to ribosomes resulted in the increase in the antimicrobial activity.

The acylation at 9 position of 4''-O-acetyl-3''-O-butyryl LM-V, 3''-O-acetyl-LM-A₅, 3''-O-propionyl-LM-A₅, 3''-O-butyryl-LM-A₅, LM-A₄, and 3''-O-acetyl-LM-A₄ gave less effect on the ID₅₀ and antimicrobial activity against Gram-positive bacteria, but decreased slightly the antimicrobial activity against *E. coli*.

As reported by PESTKA *et al.*³⁾ and \overline{O} MURA *et al.*⁴⁾, the substitution of the 4'' position of LM-V with propionyl, butyryl, and *iso*-valeryl groups increased both affinity to ribosomes and antimicrobial activity, but the acetylation at the 3 position (LM-A₅ \rightarrow LM-A₄, LM-A₁ \rightarrow LM-A₈) decreased them.

Correlation between the concentration (pK_{50}) for 50% of [³H]THLM-A₃ binding to ribosomes and log (MIC) values for the acyl derivatives is summarized in Fig. 6. There was a good correlation between the pK₅₀ and log (MIC) values for LMs (solid circles, Fig. 6). On the other hand, most of 3''-O-acyl derivatives (open circles, Fig. 6) exhibited relatively high antimicrobial activity compared with binding activity to ribosomes, suggesting that the 3''-O-acyl derivatives are more permeable than their mother compounds. These results might provide significant hints for synthesizing more active derivatives. Recently, among these 3''-O-acyl derivatives, 3''-O-propionyl-LM-A₅ was found to exhibit the highest antimicrobial activity *in vitro* against Gram-positive bacteria and the highest serum level in dogs after oral administration⁹. Development of the compound for medicinal use is now in progress.

Acknowledgements

The authors are indebted to Dr. S. PESTKA, Roche Institute of Molecular Biology, Nutley, U. S. A., for a generous gift of [¹⁴C]erythromycin which was used in preliminary experiments for [³H]THLM-A₃ binding to ribosomes, and to Mr. R. MASUMA for determination of MIC. They also thank Mr. T. OGUCHI, Miss S. SUDA, and Miss K. KAMIYAMA to helpful technical assistance.

References

- CORCORAN, J. W.: Erythromycin and the Bacterial Ribosome. in "Drug Action and Drug Resistance in Bacteria", ed. S. MITSUHASHI, p. 177~200, Tokyo Press, 1971
- OLEINICK, N. L.: The Erythromycins. in "Antibiotics. III" ed. J. W. CORCORAN & F. E. HAHN, p. 396~419, Springer Verlag, 1975
- PESTKA, S.; A. NAKAGAWA & S. OMURA: Effect of leucomycins and analogues on binding [¹⁴C]erythromycin to *Escherichia coli* ribosomes. Antimicr. Agents Chemoth. 6: 606~612, 1974
- 4) ÕMURA, S.; A. NAKAGAWA, H. SAKAKIBARA, O. OKEKAWA, R. BRANDSCH & S. PESTKA: Structure-activity relationships among the O-acyl derivatives of leucomycin. Correlation of Minimal inhibitory concentrations with binding to *Escherichia coli* ribosomes. J. Med. Chem. 20: 732~736, 1977
- PESTKA, S.: Binding of [¹⁴C]erythromycin to *Escherichia coli* ribosomes. Antimicr. Agents Chemoth. 6: 474~478, 1974
- SIEGRIST, S.; J. LAGOUARDT, N. MOREAU & F. LE GOFFIC: Mechanism of action of a 16-membered macrolide. Binding of rosaramicin to the *Escherichia coli* ribosome and its subunits. Eur. J. Biochem. 115: 323~327, 1981
- 7) OMURA, S.; M. KATAGIRI, I. UMEZAWA, K. KOMIYAMA, T. MAEKAWA, K. SEKIKAWA, A. MATSUMAE & T. HATA: Structure-biological activities relationships among leucomycins and their derivatives. J. Antibiotics 21: 532~538, 1968
- SAKAKIBARA, H.; O. OKEKAWA, T. FUJIWARA, M. OTANI & S. ŌMURA: Acyl derivatives of 16-membered macrolides. I. Synthesis and biological properties of 3''-O-propionylleucomycin A₅ (TMS-19-Q). J. Antibiotics 34: 1001~1010, 1981
- 9) SAKAKIBARA, H.; O. OKEKAWA, T. FUJIWARA, M. AIZAWA & S. ŌMURA: Acyl derivatives of 16-membered macrolides. II. Antibacterial activities and serum levels of 3"-O-acyl derivatives of leucomycin. J. Antibiotics 34: 1011~1018, 1981
- JULENC, P. C.: Rapid purification of highly active ribosomes from *Escherichia coli*. Anal. Biochem. 105: 369~374, 1980
- 11) PESTKA, S.: Antibiotics as probes of ribosome structure: Binding of chloramphenicol and erythromycin to polyribosomes; effect of other antibiotics. Antimicr. Agents Chemoth. 5: 255~267, 1974